TetraFET

D1094UK

н

G(4 PLS)

D

(2 PLS)

SOURCE

SOURCE

GATE

mm

10.92

5.84

2.54

3.30 dia

9.14

3.05

2.01

1.04

18.42

24.77

2.74

9.14

4.19

0.13

7.11

PIN 1

PIN 3

PIN 5

DIM

Α

B

С

D

Е

F

G

Н

Т

J

Κ

L

Μ

Ν

0

E F

A B

C

SOT 171

Tol

0.25

0.08

0.08

0.13

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.13

0.08

0.05

MAX

PIN 2

PIN 4

PIN 6

Inches

0.430

0.230

0.100

0.130 dia

0.360

0.120

0.079

0.041

0.725

0.975

0.108

0.360

0.165

0.005

0.280

ROHS COMPLIANT METAL GATE RF SILICON FET

GOLD METALLISED MULTI-PURPOSE SILICON DMOS RF FET 20W – 28V – 500MHz SINGLE ENDED

FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- VERY LOW C_{rss}
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 11 dB MINIMUM

APPLICATIONS

• HF/VHF/UHF COMMUNICATIONS from 1 MHz to 1 GHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

0

⊦Κ

M

SOURCE

SOURCE

Tol.

0.001

0.003

0.003

0.05

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.005

0.003

0.002

MAX

DRAIN

PD	Power Dissipation	50W
BV _{DSS}	Drain – Source Breakdown Voltage	65V
BV _{GSS}	Gate – Source Breakdown Voltage	±20V
I _{D(sat)}	Drain Current *	6A
T _{stg}	Storage Temperature	–65 to 150°C
Tj	Maximum Operating Junction Temperature	200°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions			Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source	V _{GS} = 0		10mA	65			V
	Breakdown Voltage	VGS – U	- D	IUIIA	05			v
I _{DSS}	Zero Gate Voltage	<u> </u>	V _{GS} = 0	_ 0			6	mA
	Drain Current	V _{DS} = 28V		; = 0			0	ША
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	V _{DS}	$V_{DS} = 0$			6	μA
V _{GS(th)}	Gate Threshold Voltage *	I _D = 10mA	V _{DS}	= V _{GS}	1		7	V
9 _{fs}	Forward Transconductance *	V _{DS} = 10V	I _D =	1.2A	1.08			S
G _{PS}	Common Source Power Gain	$P_0 = 20W$			11			dB
η	Drain Efficiency	V _{DS} = 28V		= 0.6A	40			%
VSWR	Load Mismatch Tolerance	f = 500MH	<u>z</u>		20:1			—
C _{iss}	Input Capacitance	$V_{DS} = 0$	$V_{GS} = -5V$	f = 1MHz			72	pF
C _{oss}	Output Capacitance	V _{DS} = 28V	$V_{GS} = 0$	f = 1MHz			36	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 28V	$V_{GS} = 0$	f = 1MHz			3	pF

* Pulse Test: Pulse Duration = 300 μ s , Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max.3.5°C / W
-----------------------	------------------------------------	---------------

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Typical S Parameters

! Vds=28V Idq=0.6A # MHZ S MA R 50

			-				_	
!Freq	S11		S21		S12		S22	
!MHz	mag	ang	mag	ang	mag	ang	mag	ang
100	0.85	-155.5	15.46	87.8	0.017	-0.7	0.51	-144.5
200	0.86	-167.1	7.325	64.7	0.014	-12.0	0.6	-150.4
300	0.89	-171.2	4.597	50.7	0.012	-15.0	0.69	-155.0
400	0.91	-173.9	2.971	38.2	0.009	-13.0	0.77	-159.0
500	0.93	-177.1	2.155	29.7	0.006	5.7	0.82	-162.8
600	0.94	-179.6	1.634	17.6	0.006	29.4	0.86	-166.8
700	0.95	178.6	1.182	9.4	0.007	52.3	0.9	-169.2
800	0.96	176.6	0.7884	5.3	0.009	65.1	0.92	-172.7
900	0.97	174.7	0.6543	7.2	0.012	71.7	0.93	-175.0
1000	0.97	173.2	0.556	5.7	0.015	75.0	0.94	-176.6
					·			

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

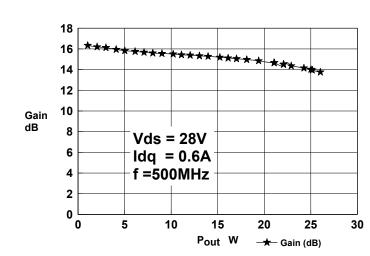


Figure 1- Gain vs. Power Output

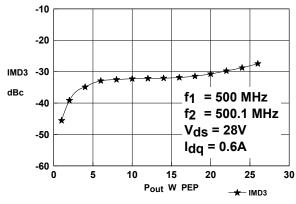


Figure 3 - IMD vs Power Output

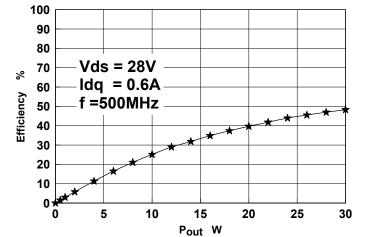
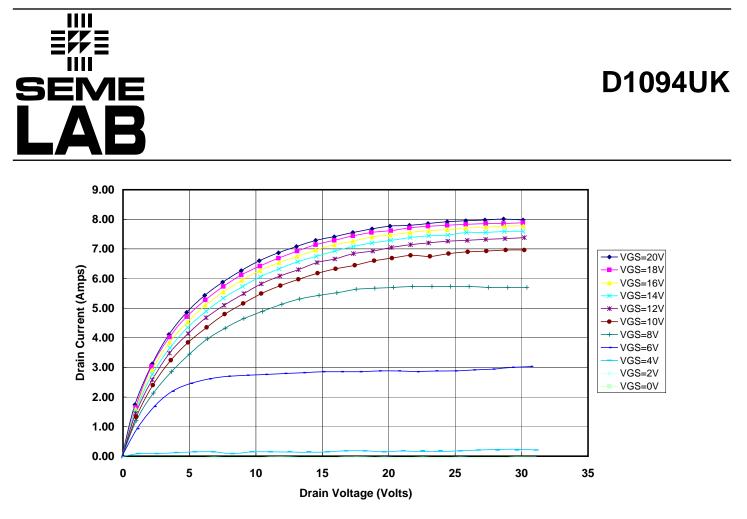
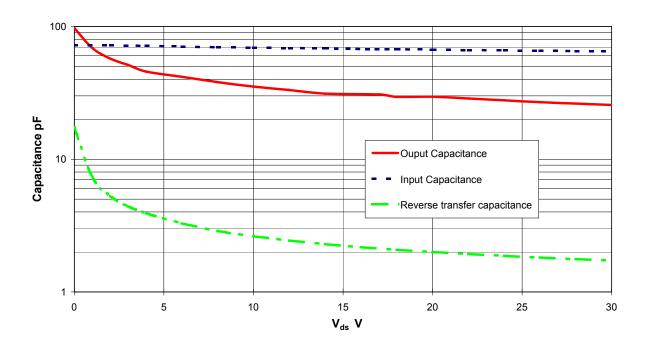
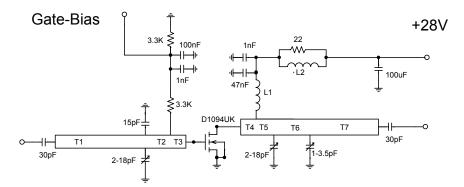




Figure 2 - Efficiency vs Power Output

D1094UK



Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

D1094UK

D1094UK 500MHz TEST FIXTURE

Substrate 1.6mm thick G200

All microstrip lines W=2.8mm

- T1 46.3mm
- T2 2.2mm
- T3, T4 8mm
- T5 4.3mm
- T6 11.7mm
- T7 32.3mm
- L1 7 turns 24swg enamelled copper wire, 3mm i.d.
- L2 1.5 turns 24swg enamelled copper wire on ferrite core

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.